Free Share CertBus Cisco 400-101 Exam Dumps and Practice Questions and Answers

CertBus 2018 Hottest Cisco 400-101 CCIE Exam VCE and PDF Dumps for Free Download!

400-101 CCIE Exam PDF and VCE Dumps : 1379QAs Instant Download: https://www.certbus.com/400-101.html [100% 400-101 Exam Pass Guaranteed or Money Refund!!]
☆ Free view online pdf on CertBus free test 400-101 PDF: https://www.certbus.com/online-pdf/400-101.pdf
☆ CertBus 2018 Hottest 400-101 CCIE exam Question PDF Free Download from Google Drive Share: https://drive.google.com/file/d/0B_3QX8HGRR1mdEpkTFZvSDJDc2c/view?usp=sharing

Following 400-101 1379QAs are all new published by Cisco Official Exam Center

The CCIE Aug 02,2018 Latest 400-101 vce dumps CCIE Routing and Switching Written v5.0 certification exam is a real worth challenging task if you want to win a place in the IT industry. You should not feel frustrated about the confronting difficulties. CertBus gives you the most comprehensive version of Newest 400-101 pdf CCIE Routing and Switching Written v5.0 VCE dumps now. Get a complete hold on CCIE CCIE Hotest 400-101 QAs CCIE Routing and Switching Written v5.0 exam syllabus through CertBus and boost up your skills. What’s more, the CCIE Latest 400-101 free download dumps are the latest. It would be great helpful to your CCIE Newest 400-101 pdf exam.

CertBus – best way to guarantee your 400-101 certification and exam success! CertBus 400-101 certification practice questions and answers. help candidates get well prepared for their 400-101 certification exams. 400-101 certification training tips | resources for 400-101 exam study 400-101 certification application guide and 400-101 training.

We CertBus has our own expert team. They selected and published the latest 400-101 preparation materials from Cisco Official Exam-Center: https://www.certbus.com/400-101.html

QUESTION NO:3

A new backup connection is being deployed on a remote site router. The stability of the connection

has been a concern. In order to provide more information to EIGRP regarding this interface, you

wish to incorporate the “reliability” cost metric in the EIGRP calculation with the command metric

weights 1 0 1 0 1.

What impact will this modification on the remote site router have for other existing EIGRP

neighborships from the same EIGRP domain?

A. Existing neighbors will immediately begin using the new metric.

B. Existing neighbors will use the new metric after clearing the EIGRP neighbors.

C. Existing neighbors will resync, maintaining the neighbor relationship.

D. All existing neighbor relationships will go down.

Answer: D

Explanation:


QUESTION NO:6

Why would a rogue host that is running a DHCP server on a campus LAN network present a

security risk?

A. It may allocate IP addresses from an unknown subnet to the users.

B. All multicast traffic can be sniffed by using the DHCP multicast capabilities.

C. The CPU utilization of the first hop router can be overloaded by exploiting DHCP relay open

ports.

D. A potential man-in-the-middle attack can be used against the clients.

Answer: D

Explanation:


QUESTION NO:7

Which statement is true about TCN propagation?

A. The originator of the TCN immediately floods this information through the network.

B. The TCN propagation is a two step process.

C. A TCN is generated and sent to the root bridge.

D. The root bridge must flood this information throughout the network.

Answer: C

Explanation:

Explanation

New Topology Change Mechanisms

When an 802.1D bridge detects a topology change, it uses a reliable mechanism to first notify the

root bridge.

This is shown in this diagram:

Once the root bridge is aware of a change in the topology of the network, it sets the TC flag on the

BPDUs it sends out, which are then relayed to all the bridges in the network. When a bridge

receives a BPDU with the TC flag bit set, it reduces its bridging-table aging time to forward delay

seconds. This ensures a relatively quick flush of stale information. Refer to Understanding

Spanning-Tree Protocol Topology Changes for more information on this process. This topology

change mechanism is deeply remodeled in RSTP. Both the detection of a topology change and its

propagation through the network evolve.

Topology Change Detection

In RSTP, only non-edge ports that move to the forwarding state cause a topology change. This

means that a loss of connectivity is not considered as a topology change any more, contrary to

802.1D (that is, a port that moves to blocking no longer generates a TC). When a RSTP bridge

detects a topology change, these occur:

It starts the TC While timer with a value equal to twice the hello-time for all its non-edge

designated ports and its root port, if necessary.

It flushes the MAC addresses associated with all these ports.

Note: As long as the TC While timer runs on a port, the BPDUs sent out of that port have the TC

bit set.

BPDUs are also sent on the root port while the timer is active.

Topology Change Propagation

When a bridge receives a BPDU with the TC bit set from a neighbor, these occur:

It clears the MAC addresses learned on all its ports, except the one that receives the topology

change.

It starts the TC While timer and sends BPDUs with TC set on all its designated ports and root port

(RSTP no longer uses the specific TCN BPDU, unless a legacy bridge needs to be notified).

This way, the TCN floods very quickly across the whole network. The TC propagation is now a one

step process. In fact, the initiator of the topology change floods this information throughout the

network, as opposed to 802.1D where only the root did. This mechanism is much faster than the

802.1D equivalent. There is no need to wait for the root bridge to be notified and then maintain the

topology change state for the whole network for seconds.

In just a few seconds, or a small multiple of hello-times, most of the entries in the CAM tables of

the entire network (VLAN) flush. This approach results in potentially more temporary flooding, but

on the other hand it clears potential stale information that prevents rapid connectivity restitution.

Reference

http://www.cisco.com/en/US/tech/tk389/tk621/technologies_white_paper09186a0080094cfa.shtml


QUESTION NO:9

Which two are effects of connecting a network segment that is running 802.1D to a network

segment that is running 802.1w? (Choose two.)

A. The entire network switches to 802.1D and generates BPDUs to determine root bridge status. B.

A migration delay of three seconds occurs when the port that is connected to the 802.1D bridge

comes up.

C. The entire network reconverges and a unique root bridge for the 802.1D segment, and a root

bridge for the 802.1w segment, is chosen.

D. The first hop 802.1w switch that is connected to the 802.1D runs entirely in 802.1D compatibility

mode and converts the BPDUs to either 802.1D or 802.1w BPDUs to the 802.1D or 802.1w

segments of the network.

E. Classic 802.1D timers, such as forward delay and max-age, will only be used as a backup, and

will not be necessary if point-to-point links and edge ports are properly identified and set by the

administrator.

Answer: B,E

Explanation:

Each port maintains a variable that defines the protocol to run on the corresponding segment. A

migration delay timer of three seconds also starts when the port comes up. When this timer runs,

the current STP or RSTP mode associated to the port is locked. As soon as the migration delay

expires, the port adapts to the mode that corresponds to the next BPDU it receives. If the port

changes its mode of operation as a result of a BPDU received, the migration delay restarts.

802.1D works by the concept that the protocol had to wait for the network to converge before it

transitioned a port into the forwarding state. With Rapid Spanning Tree it does not have to rely on

any timers, the only variables that that it relies on is edge ports and link types.

Any uplink port that has an alternate port to the root can be directly placed into the forwarding

state (This is the Rapid convergence that you speak of “restored quickly when RSTP is already in

use?”). This is what happened when you disconnected the primary look; the port that was ALT,

moved to FWD immediately, but the switch also still needs to create a BDU with the TC bit set to

notify the rest of the network that a topology has occurred and all non-edge designated ports will

transition to BLK, LRN, and then FWD to ensure there are no loops in the rest of the network. This

is why if you have a host on a switchport, and you know for a fact that it is only one host, enable

portfast to configure the port as an edgeport so that it does not have to transition to all the STP

states.

Reference

http://www.cisco.com/en/US/tech/tk389/tk621/technologies_white_paper09186a0080094cfa.shtml


QUESTION NO:14

Which three options are features of VTP version 3? (Choose three.)

A. VTPv3 supports 8K VLANs.

B. VTPv3 supports private VLAN mapping.

C. VTPv3 allows for domain discovery.

D. VTPv3 uses a primary server concept to avoid configuration revision issues.

E. VTPv3 is not compatible with VTPv1 or VTPv2.

F. VTPv3 has a hidden password option.

Answer: B,D,F

Explanation:

Key Benefits of VTP Version 3

Much work has gone into improving the usability of VTP version 3 in three major areas:

The new version of VTP offers better administrative control over which device is allowed to update

other devices\’ view of the VLAN topology. The chance of unintended and disruptive changes is

significantly reduced, and availability is increased. The reduced risk of unintended changes will

ease the change process and help speed deployment.

Functionality for the VLAN environment has been significantly expanded. Two enhancements are

most beneficial for today\’s networks:


400-101 PDF Dumps400-101 Study Guide400-101 Braindumps

QUESTION NO:25

Refer to the exhibit.

After a link flap in the network, which two EIGRP neighbors will not be queried for alternative

paths? (Choose two.)

A. 192.168.1.1

B. 192.168.3.7

C. 192.168.3.8

D. 192.168.3.6

E. 192.168.2.1

F. 192.168.3.9

Answer: B,C

Explanation:

Explanation

Both 192.168.3.7 and 192.168.3.8 are in an EIGRP Stub area

The Enhanced Interior Gateway Routing Protocol (EIGRP) Stub Routing feature improves network

stability, reduces resource utilization, and simplifies stub router configuration.

Stub routing is commonly used in a hub and spoke network topology. In a hub and spoke network,

one or more end (stub) networks are connected to a remote router (the spoke) that is connected to

one or more distribution routers (the hub). The remote router is adjacent only to one or more

distribution routers. The only route for IP traffic to follow into the remote router is through a

distribution router. This type of configuration is commonly used in WAN topologies where the

distribution router is directly connected to a WAN. The distribution router can be connected to

many more remote routers. Often, the distribution router will be connected to 100 or more remote

routers. In a hub and spoke topology, the remote router must forward all nonlocal traffic to a

distribution router, so it becomes unnecessary for the remote router to hold a complete routing

table. Generally, the distribution router need not send anything more than a default route to the

remote router.

When using the EIGRP Stub Routing feature, you need to configure the distribution and remote

routers to use EIGRP, and to configure only the remote router as a stub. Only specified routes are

propagated from the remote (stub) router. The router responds to queries for summaries,

connected routes, redistributed static routes, external routes, and internal routes with the message

“inaccessible.” A router that is configured as a stub will send a special peer information packet to

all neighboring routers to report its status as a stub router. Any neighbor that receives a packet

informing it of the stub status will not query the stub router for any routes, and a router that has a

stub peer will not query that peer. The stub router will depend on the distribution router to send the

proper updates to all peers.

Reference

http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/eigrpstb.html#wp1021949


QUESTION NO:27

Refer to the exhibit.

What triggered the first SPF recalculation?

A. changes in a router LSA, subnet LSA, and external LSA

B. changes in a router LSA, summary network LSA, and external LSA

C. changes in a router LSA, summary network LSA, and summary ASBR LSA

D. changes in a router LSA, summary ASBR LSA, and external LSA

Answer: B

Explanation:

OSPFv2

Is built around links, and any IP prefix change in an area will trigger a full SPF. It advertises IP

information in Router and Network LSAs. The routers thus, advertise both the IP prefix information

(or the connected subnet information) and topology information in the same LSAs. This implies

that if an IP address attached to an interface changes, OSPF routers would have to originate a

Router LSA or a Network LSA, which btw also carries the topology information. This would trigger

a full SPF on all routers in that area, since the same LSAs are flooded to convey topological

change information. This can be an issue with an access router or the one sitting at the edge,

since many stub links can change regularly.

Only changes in interarea, external and NSSA routes result in partial SPF calculation (since type

3, 4, 5 and 7 LSAs only advertise IP prefix information) and thus IS-IS


QUESTION NO:30

What is the flooding scope of an OSPFv3 LSA, if the value of the S2 bit is set to 1 and the S1 bit is

set to 0?

A. link local

B. area wide

C. AS wide

D. reserved

Answer: C

Explanation:

The Type 1 router LSA is now link local and the Type 2 Network LSA is AS Wide

S2 and S1 indicate the LSA\’s flooding scope. Table 9-1 shows the possible values of these two

bits and the associated flooding scopes.

Table 9-1 S bits in the OSPFv3 LSA Link State Type field and their associated flooding scopes

LSA Function Code, the last 13 bits of the LS Type field, corresponds to the OSPFv2 Type field.

Table 9-2 shows the common LSA types used by OSPFv3 and the values of their corresponding

LS Types. If you decode the hex values, you will see that the default U bit of all of them is 0. The S

bits of all LSAs except two indicate area scope. Of the remaining two, AS External LSAs have an

AS flooding scope and Link LSAs have a linklocal flooding scope. Most of the OSPFv3 LSAs have

functional counterparts in OSPFv2; these OSPFv2 LSAs and their types are also shown in Table

9-2.

Table 9-2 OSPFv3 LSA types and their OSPFv2 counterparts

Reference

http://www.networkworld.com/subnets/cisco/050107-ch9-ospfv3.html?page=1


QUESTION NO:31

How will EIGRPv6 react if there is an IPv6 subnet mask mismatch between the Global Unicast

addresses on a point-to-point link?

A. EIGRPv6 will form a neighbor relationship.

B. EIGRPv6 will not form a neighbor relationship.

C. EIGRPv6 will form a neighbor relationship, but with the log MSG: “EIGRPv6 neighbor not on a

common subnet.”

D. EIGRPv6 will form a neighbor relationship, but routes learned from that neighbor will not be

installed in the routing table.

Answer: A Explanation:

http://www.ietf.org/rfc/rfc3587.txt


QUESTION NO:42

Which type of domains is interconnected using Multicast Source Discovery Protocol?

A. PIM-SM

B. PIM-DM

C. PIM-SSM

D. DVMRP

Answer: A

Explanation: Multicast Source Discovery Protocol (MSDP) is a Protocol Independent Multicast

(PIM) family multicast routing protocol defined by Experimental RFC 3618. MSDP interconnects

multiple IPv4 PIM Sparse-Mode (PIM-SM) domains which enables PIM-SM to have Rendezvous

Point (RP) redundancy and inter-domain multicasting.

Reference

http://en.wikipedia.org/wiki/Multicast_Source_Discovery_Protocol


CertBus exam braindumps are pass guaranteed. We guarantee your pass for the 400-101 exam successfully with our Cisco materials. CertBus CCIE Routing and Switching Written v5.0 exam PDF and VCE are the latest and most accurate. We have the best Cisco in our team to make sure CertBus CCIE Routing and Switching Written v5.0 exam questions and answers are the most valid. CertBus exam CCIE Routing and Switching Written v5.0 exam dumps will help you to be the Cisco specialist, clear your 400-101 exam and get the final success.

400-101 Latest questions and answers on Google Drive(100% Free Download): https://drive.google.com/file/d/0B_3QX8HGRR1mdEpkTFZvSDJDc2c/view?usp=sharing

400-101 Cisco exam dumps (100% Pass Guaranteed) from CertBus: https://www.certbus.com/400-101.html [100% Exam Pass Guaranteed]

Why select/choose CertBus?

Millions of interested professionals can touch the destination of success in exams by certbus.com. products which would be available, affordable, updated and of really best quality to overcome the difficulties of any course outlines. Questions and Answers material is updated in highly outclass manner on regular basis and material is released periodically and is available in testing centers with whom we are maintaining our relationship to get latest material.

Brand Certbus Testking Pass4sure Actualtests Others
Price $45.99 $124.99 $125.99 $189 $69.99-99.99
Up-to-Date Dumps
Free 365 Days Update
Real Questions
Printable PDF
Test Engine
One Time Purchase
Instant Download
Unlimited Install
100% Pass Guarantee
100% Money Back
Secure Payment
Privacy Protection

Author: CertBus