Pass Guarantee 400-101 Exam By Taking CertBus New Cisco 400-101 VCE And PDF Braindumps

CertBus 2018 Hottest Cisco 400-101 CCIE Exam VCE and PDF Dumps for Free Download!

400-101 CCIE Exam PDF and VCE Dumps : 1063QAs Instant Download: https://www.certbus.com/400-101.html [100% 400-101 Exam Pass Guaranteed or Money Refund!!]
☆ Free view online pdf on CertBus free test 400-101 PDF: https://www.certbus.com/online-pdf/400-101.pdf
☆ CertBus 2018 Hottest 400-101 CCIE exam Question PDF Free Download from Google Drive Share: https://drive.google.com/file/d/0B_3QX8HGRR1mdEpkTFZvSDJDc2c/view?usp=sharing

Following 400-101 1063QAs are all new published by Cisco Official Exam Center

CertBus ensures to provide the most update Newest 400-101 vce CCIE Routing and Switching Written v5.0 exam questions with the most accurate answers. CertBus CCIE Latest 400-101 pdf dumps are the most complete and authoritative exam preparation materials with which one can pass the CCIE May 06,2018 Hotest 400-101 vce exam in an easy way. Preparing for Cisco CCIE Newest 400-101 pdf dumps CCIE Routing and Switching Written v5.0 exam is really a tough task to accomplish. But CertBus will simplified the process.

CertBus – help you to get your 400-101 certification more easily. save your time and money! high pass rate! CertBus exam guide: pass the 400-101 exam on your first attempt! CertBus – 100% real 400-101 certification exam questions and answers. easily pass with a high score. CertBus goal is to help you get passed in all CertBus certification exams first attempt. high pass rate and success rate.

We CertBus has our own expert team. They selected and published the latest 400-101 preparation materials from Cisco Official Exam-Center: https://www.certbus.com/400-101.html

QUESTION NO:1

Which two commands are required to enable multicast on a router, knowing that the receivers only

support IGMPv2? (Choose two.)

A. ip pim rp-address

B. ip pim ssm

C. ip pim sparse-mode

D. ip pim passive

Answer: A,C

Explanation:

Sparse mode logic (pull mode) is the opposite of Dense mode logic (push mode), in Dense mode

it is supposed that in every network there is someone who is requesting the multicast traffic so

PIM-DM routers begin by flooding the multicast traffic out of all their interfaces except those from

where a prune message is received to eliminate the


QUESTION NO:5

Refer to the exhibit.

A small enterprise connects its office to two ISPs, using separate T1 links. A static route is used

for the default route, pointing to both interfaces with a different administrative distance, so that one

of the default routes is preferred.

Recently the primary link has been upgraded to a new 10 Mb/s Ethernet link.

After a few weeks, they experienced a failure. The link did not pass traffic, but the primary static

route remained active. They lost their Internet connectivity, even though the backup link was

operating.

Which two possible solutions can be implemented to avoid this situation in the future? (Choose

two.)

A. Implement HSRP link tracking on the branch router R1.

B. Use a track object with an IP SLA probe for the static route on R1.

C. Track the link state of the Ethernet link using a track object on R1.

D. Use a routing protocol between R1 and the upstream ISP.

Answer: B,D

Explanation:

Interface Tracking

Interface tracking allows you to specify another interface on the router for the HSRP process to

monitor in order to alter the HSRP priority for a given group.

If the specified interface\’s line protocol goes down, the HSRP priority of this router is reduced,

allowing another HSRP router with higher priority can become active (if it has preemption

enabled).

To configure HSRP interface tracking, use the standby [group] track interface [priority] command.

When multiple tracked interfaces are down, the priority is reduced by a cumulative amount. If you

explicitly set the decrement value, then the value is decreased by that amount if that interface is

down, and decrements are cumulative. If you do not set an explicit decrement value, then the

value is decreased by 10 for each interface that goes down, and decrements are cumulative.

The following example uses the following configuration, with the default decrement value of 10.

Note: When an HSRP group number is not specified, the default group number is group 0.

interface ethernet0

ip address 10.1.1.1 255.255.255.0

standby ip 10.1.1.3

standby priority 110

standby track serial0

standby track serial1

The HSRP behavior with this configuration is:

0 interfaces down = no decrease (priority is 110)

1 interface down = decrease by 10 (priority becomes100)

2 interfaces down = decrease by 10 (priority becomes 90)

Reference

http://www.cisco.com/en/US/tech/tk648/tk362/technologies_tech_note09186a0080094a91.shtml#i

ntracking


QUESTION NO:8

Which statement is true about loop guard?

A. Loop guard only operates on interfaces that are considered point-to-point by the spanning tree.

B. Loop guard only operates on root ports.

C. Loop guard only operates on designated ports.

D. Loop guard only operates on edge ports.

Answer: A

Explanation:

Explanation

Understanding How Loop Guard Works

Unidirectional link failures may cause a root port or alternate port to become designated as root if

BPDUs are absent. Some software failures may introduce temporary loops in the network. Loop

guard checks if a root port or an alternate root port receives BPDUs. If the port is receiving

BPDUs, loop guard puts the port into an inconsistent state until it starts receiving BPDUs again.

Loop guard isolates the failure and lets spanning tree converge to a stable topology without the

failed link or bridge.

You can enable loop guard per port with the set spantree guard loop command.

Note When you are in MST mode, you can set all the ports on a switch with the set spantree

global-defaults loop-guard command.

When you enable loop guard, it is automatically applied to all of the active instances or VLANs to

which that port belongs. When you disable loop guard, it is disabled for the specified ports.

Disabling loop guard moves all loop-inconsistent ports to the listening state.

If you enable loop guard on a channel and the first link becomes unidirectional, loop guard blocks

the entire channel until the affected port is removed from the channel. Figure 8-6 shows loop

guard in a triangle switch configuration.

Figure 8-6 Triangle Switch Configuration with Loop Guard

Figure 8-6 illustrates the following configuration:

Switches A and B are distribution switches.

Switch C is an access switch.

Loop guard is enabled on ports 3/1 and 3/2 on Switches A, B, and C.

Use loop guard only in topologies where there are blocked ports. Topologies that have no blocked

ports, which are loop free, do not need to enable this feature. Enabling loop guard on a root switch

has no effect but provides protection when a root switch becomes a nonroot switch.

Follow these guidelines when using loop guard:

Do not enable loop guard on PortFast-enabled or dynamic VLAN ports.

Do not enable PortFast on loop guard-enabled ports.

Do not enable loop guard if root guard is enabled.

Do not enable loop guard on ports that are connected to a shared link.

Note: We recommend that you enable loop guard on root ports and alternate root ports on access

switches.

Loop guard interacts with other features as follows:

Loop guard does not affect the functionality of UplinkFast or BackboneFast.

Root guard forces a port to always be designated as the root port. Loop guard is effective only if

the port is a root port or an alternate port. Do not enable loop guard and root guard on a port at the

same time.

PortFast transitions a port into a forwarding state immediately when a link is established. Because

a PortFast-enabled port will not be a root port or alternate port, loop guard and PortFast cannot be

configured on the same port. Assigning dynamic VLAN membership for the port requires that the

port is PortFast enabled. Do not configure a loop guard-enabled port with dynamic VLAN

membership.

If your network has a type-inconsistent port or a PVID-inconsistent port, all BPDUs are dropped

until the misconfiguration is corrected. The port transitions out of the inconsistent state after the

message age expires. Loop guard ignores the message age expiration on type-inconsistent ports

and PVID-inconsistent ports. If the port is already blocked by loop guard, misconfigured BPDUs

that are received on the port make loop guard recover, but the port is moved into the type-

inconsistent state or PVID-inconsistent state.

In high-availability switch configurations, if a port is put into the blocked state by loop guard, it

remains blocked even after a switchover to the redundant supervisor engine. The newly activated

supervisor engine recovers the port only after receiving a BPDU on that port.

Loop guard uses the ports known to spanning tree. Loop guard can take advantage of logical ports

provided by the Port Aggregation Protocol (PAgP). However, to form a channel, all the physical

ports grouped in the channel must have compatible configurations. PAgP enforces uniform

configurations of root guard or loop guard on all the physical ports to form a channel.

These caveats apply to loop guard:


QUESTION NO:15

Which three options are considered in the spanning-tree decision process? (Choose three.)

A. lowest root bridge ID

B. lowest path cost to root bridge

C. lowest sender bridge ID

D. highest port ID

E. highest root bridge ID

F. highest path cost to root bridge

Answer: A,B,C

Explanation:

Configuration bridge protocol data units (BPDUs) are sent between switches for each port.

Switches use s four step process to save a copy of the best BPDU seen on every port. When a

port receives a better BPDU, it stops sending them. If the BPDUs stop arriving for 20 seconds

(default), it begins sending them again.

Step 1 Lowest Root Bridge ID (BID)

Step 2 Lowest Path Cost to Root Bridge

Step 3 Lowest Sender BID

Step 4 Lowest Port ID

Reference

Cisco General Networking Theory Quick Reference Sheets


QUESTION NO:18

Refer to the exhibit.

Which statement is correct about the prefix 160.0.0.0/8?

A. The prefix has encountered a routing loop.

B. The prefix is an aggregate with an as-set.

C. The prefix has been aggregated twice, once in AS 100 and once in AS 200.

D. None of these statements is true.

Answer: B

Explanation:


400-101 VCE Dumps400-101 Exam Questions400-101 Braindumps

QUESTION NO:25

Refer to the exhibit.

After a link flap in the network, which two EIGRP neighbors will not be queried for alternative

paths? (Choose two.)

A. 192.168.1.1

B. 192.168.3.7

C. 192.168.3.8

D. 192.168.3.6

E. 192.168.2.1

F. 192.168.3.9

Answer: B,C

Explanation:

Explanation

Both 192.168.3.7 and 192.168.3.8 are in an EIGRP Stub area

The Enhanced Interior Gateway Routing Protocol (EIGRP) Stub Routing feature improves network

stability, reduces resource utilization, and simplifies stub router configuration.

Stub routing is commonly used in a hub and spoke network topology. In a hub and spoke network,

one or more end (stub) networks are connected to a remote router (the spoke) that is connected to

one or more distribution routers (the hub). The remote router is adjacent only to one or more

distribution routers. The only route for IP traffic to follow into the remote router is through a

distribution router. This type of configuration is commonly used in WAN topologies where the

distribution router is directly connected to a WAN. The distribution router can be connected to

many more remote routers. Often, the distribution router will be connected to 100 or more remote

routers. In a hub and spoke topology, the remote router must forward all nonlocal traffic to a

distribution router, so it becomes unnecessary for the remote router to hold a complete routing

table. Generally, the distribution router need not send anything more than a default route to the

remote router.

When using the EIGRP Stub Routing feature, you need to configure the distribution and remote

routers to use EIGRP, and to configure only the remote router as a stub. Only specified routes are

propagated from the remote (stub) router. The router responds to queries for summaries,

connected routes, redistributed static routes, external routes, and internal routes with the message

“inaccessible.” A router that is configured as a stub will send a special peer information packet to

all neighboring routers to report its status as a stub router. Any neighbor that receives a packet

informing it of the stub status will not query the stub router for any routes, and a router that has a

stub peer will not query that peer. The stub router will depend on the distribution router to send the

proper updates to all peers.

Reference

http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/eigrpstb.html#wp1021949


QUESTION NO:27

Refer to the exhibit.

What triggered the first SPF recalculation?

A. changes in a router LSA, subnet LSA, and external LSA

B. changes in a router LSA, summary network LSA, and external LSA

C. changes in a router LSA, summary network LSA, and summary ASBR LSA

D. changes in a router LSA, summary ASBR LSA, and external LSA

Answer: B

Explanation:

OSPFv2

Is built around links, and any IP prefix change in an area will trigger a full SPF. It advertises IP

information in Router and Network LSAs. The routers thus, advertise both the IP prefix information

(or the connected subnet information) and topology information in the same LSAs. This implies

that if an IP address attached to an interface changes, OSPF routers would have to originate a

Router LSA or a Network LSA, which btw also carries the topology information. This would trigger

a full SPF on all routers in that area, since the same LSAs are flooded to convey topological

change information. This can be an issue with an access router or the one sitting at the edge,

since many stub links can change regularly.

Only changes in interarea, external and NSSA routes result in partial SPF calculation (since type

3, 4, 5 and 7 LSAs only advertise IP prefix information) and thus IS-IS


QUESTION NO:33

Which two OSPF LSA types are new in OSPF version 3? (Choose two.)

A. Link

B. NSSA external

C. Network link

D. Intra-area prefix

E. AS domain

Answer: A,D

Explanation:

New LSA Types

OSPFv3 carries over the seven basic LSA types we\’re familiar with from OSPFv2. However, the

type 1 and 2 LSAs have been re-purposed, as will be discussed in a bit. OSPFv3 also introduces

two new LSA types: Link and Intra-area Prefix.

Reference

http://packetlife.net/blog/2010/mar/2/ospfv2-versus-ospfv3/


QUESTION NO:39

Which two statements are correct about Nonstop Forwarding? (Choose two.)

A. It allows the standby RP to take control of the device after a hardware or software fault on the

active RP.

B. It is a Layer 3 function that works with SSO to minimize the amount of time a network is

unavailable to users following a switchover.

C. It is supported by the implementation of EIGRP, OSPF, RIPv2, and BGP protocols.

D. It synchronizes startup configuration, startup variables, and running configuration.

E. The main objective of NSF is to continue forwarding IP packets following a switchover.

F. Layer 2 802.1w or 802.1s must be used, as 802.1d cannot process the Layer 2 changes.

G. Routing protocol tuning parameters must be the same as the NSF parameters, or failover will

be inconsistent.

Answer: B,E

Explanation: Explanation

Cisco Nonstop Forwarding (NSF) works with the Stateful Switchover (SSO) feature in Cisco IOS

software. NSF works with SSO to minimize the amount of time a network is unavailable to its

users following a switchover. The main objective of Cisco NSF is to continue forwarding IP

packets following a Route Processor (RP) switchover.

Reference

http://www.cisco.com/en/US/docs/ios/12_2s/feature/guide/fsnsf20s.html


QUESTION NO:44

How is RPF used in multicast routing?

A. to prevent multicast packets from looping

B. to prevent PIM packets from looping

C. to instruct PIM where to send a (*, G) or (S, G) join message

D. to prevent multicast packets from looping and to instruct PIM where to send a (*, G) or (S, G)

join message

Answer: D

Explanation:


CertBus exam braindumps are pass guaranteed. We guarantee your pass for the 400-101 exam successfully with our Cisco materials. CertBus CCIE Routing and Switching Written v5.0 exam PDF and VCE are the latest and most accurate. We have the best Cisco in our team to make sure CertBus CCIE Routing and Switching Written v5.0 exam questions and answers are the most valid. CertBus exam CCIE Routing and Switching Written v5.0 exam dumps will help you to be the Cisco specialist, clear your 400-101 exam and get the final success.

400-101 Latest questions and answers on Google Drive(100% Free Download): https://drive.google.com/file/d/0B_3QX8HGRR1mdEpkTFZvSDJDc2c/view?usp=sharing

400-101 Cisco exam dumps (100% Pass Guaranteed) from CertBus: https://www.certbus.com/400-101.html [100% Exam Pass Guaranteed]

Why select/choose CertBus?

Millions of interested professionals can touch the destination of success in exams by certbus.com. products which would be available, affordable, updated and of really best quality to overcome the difficulties of any course outlines. Questions and Answers material is updated in highly outclass manner on regular basis and material is released periodically and is available in testing centers with whom we are maintaining our relationship to get latest material.

Brand Certbus Testking Pass4sure Actualtests Others
Price $45.99 $124.99 $125.99 $189 $69.99-99.99
Up-to-Date Dumps
Free 365 Days Update
Real Questions
Printable PDF
Test Engine
One Time Purchase
Instant Download
Unlimited Install
100% Pass Guarantee
100% Money Back
Secure Payment
Privacy Protection

Author: CertBus