[Latest Version] Free CertBus Cisco 400-101 PDF Download with 100% Pass Guarantee

CertBus 2018 Valid Cisco 400-101 CCIE Exam VCE and PDF Dumps for Free Download!

400-101 CCIE Exam PDF and VCE Dumps : 1063QAs Instant Download: https://www.certgod.com/400-101.html [100% 400-101 Exam Pass Guaranteed or Money Refund!!]
☆ Free view online pdf on CertBus free test 400-101 PDF: https://www.certgod.com/online-pdf/400-101.pdf
☆ CertBus 2018 Valid 400-101 CCIE exam Question PDF Free Download from Google Drive Share: https://drive.google.com/file/d/0B_3QX8HGRR1mdEpkTFZvSDJDc2c/view?usp=sharing

Following 400-101 1063QAs are all new published by Cisco Official Exam Center

CertBus has the latest update version of Cisco CCIE Apr 08,2018 Hotest 400-101 practice exam, which is a hot exam of Cisco CCIE certification. CertBus Cisco CCIE exam dumps will fill you with confidence to pass this certification exam with a satisfied high score.

CertBus – latest update source for all 400-101 certification exams. you are only successful with 400-101 testing engine in your it certification – CertBus! as a leading 400-101 exam study guides provider, CertBus provides the latest real test practice for hottest cisco, microsoft, comptia, vmware, ibm, hp, oracle, citrix exams. 100% real and latest.

We CertBus has our own expert team. They selected and published the latest 400-101 preparation materials from Cisco Official Exam-Center: https://www.certgod.com/400-101.html

QUESTION NO:3

A new backup connection is being deployed on a remote site router. The stability of the connection

has been a concern. In order to provide more information to EIGRP regarding this interface, you

wish to incorporate the “reliability” cost metric in the EIGRP calculation with the command metric

weights 1 0 1 0 1.

What impact will this modification on the remote site router have for other existing EIGRP

neighborships from the same EIGRP domain?

A. Existing neighbors will immediately begin using the new metric.

B. Existing neighbors will use the new metric after clearing the EIGRP neighbors.

C. Existing neighbors will resync, maintaining the neighbor relationship.

D. All existing neighbor relationships will go down.

Answer: D

Explanation:


QUESTION NO:8

Which statement is true about loop guard?

A. Loop guard only operates on interfaces that are considered point-to-point by the spanning tree.

B. Loop guard only operates on root ports.

C. Loop guard only operates on designated ports.

D. Loop guard only operates on edge ports.

Answer: A

Explanation:

Explanation

Understanding How Loop Guard Works

Unidirectional link failures may cause a root port or alternate port to become designated as root if

BPDUs are absent. Some software failures may introduce temporary loops in the network. Loop

guard checks if a root port or an alternate root port receives BPDUs. If the port is receiving

BPDUs, loop guard puts the port into an inconsistent state until it starts receiving BPDUs again.

Loop guard isolates the failure and lets spanning tree converge to a stable topology without the

failed link or bridge.

You can enable loop guard per port with the set spantree guard loop command.

Note When you are in MST mode, you can set all the ports on a switch with the set spantree

global-defaults loop-guard command.

When you enable loop guard, it is automatically applied to all of the active instances or VLANs to

which that port belongs. When you disable loop guard, it is disabled for the specified ports.

Disabling loop guard moves all loop-inconsistent ports to the listening state.

If you enable loop guard on a channel and the first link becomes unidirectional, loop guard blocks

the entire channel until the affected port is removed from the channel. Figure 8-6 shows loop

guard in a triangle switch configuration.

Figure 8-6 Triangle Switch Configuration with Loop Guard

Figure 8-6 illustrates the following configuration:

Switches A and B are distribution switches.

Switch C is an access switch.

Loop guard is enabled on ports 3/1 and 3/2 on Switches A, B, and C.

Use loop guard only in topologies where there are blocked ports. Topologies that have no blocked

ports, which are loop free, do not need to enable this feature. Enabling loop guard on a root switch

has no effect but provides protection when a root switch becomes a nonroot switch.

Follow these guidelines when using loop guard:

Do not enable loop guard on PortFast-enabled or dynamic VLAN ports.

Do not enable PortFast on loop guard-enabled ports.

Do not enable loop guard if root guard is enabled.

Do not enable loop guard on ports that are connected to a shared link.

Note: We recommend that you enable loop guard on root ports and alternate root ports on access

switches.

Loop guard interacts with other features as follows:

Loop guard does not affect the functionality of UplinkFast or BackboneFast.

Root guard forces a port to always be designated as the root port. Loop guard is effective only if

the port is a root port or an alternate port. Do not enable loop guard and root guard on a port at the

same time.

PortFast transitions a port into a forwarding state immediately when a link is established. Because

a PortFast-enabled port will not be a root port or alternate port, loop guard and PortFast cannot be

configured on the same port. Assigning dynamic VLAN membership for the port requires that the

port is PortFast enabled. Do not configure a loop guard-enabled port with dynamic VLAN

membership.

If your network has a type-inconsistent port or a PVID-inconsistent port, all BPDUs are dropped

until the misconfiguration is corrected. The port transitions out of the inconsistent state after the

message age expires. Loop guard ignores the message age expiration on type-inconsistent ports

and PVID-inconsistent ports. If the port is already blocked by loop guard, misconfigured BPDUs

that are received on the port make loop guard recover, but the port is moved into the type-

inconsistent state or PVID-inconsistent state.

In high-availability switch configurations, if a port is put into the blocked state by loop guard, it

remains blocked even after a switchover to the redundant supervisor engine. The newly activated

supervisor engine recovers the port only after receiving a BPDU on that port.

Loop guard uses the ports known to spanning tree. Loop guard can take advantage of logical ports

provided by the Port Aggregation Protocol (PAgP). However, to form a channel, all the physical

ports grouped in the channel must have compatible configurations. PAgP enforces uniform

configurations of root guard or loop guard on all the physical ports to form a channel.

These caveats apply to loop guard:


QUESTION NO:9

Which two are effects of connecting a network segment that is running 802.1D to a network

segment that is running 802.1w? (Choose two.)

A. The entire network switches to 802.1D and generates BPDUs to determine root bridge status. B.

A migration delay of three seconds occurs when the port that is connected to the 802.1D bridge

comes up.

C. The entire network reconverges and a unique root bridge for the 802.1D segment, and a root

bridge for the 802.1w segment, is chosen.

D. The first hop 802.1w switch that is connected to the 802.1D runs entirely in 802.1D compatibility

mode and converts the BPDUs to either 802.1D or 802.1w BPDUs to the 802.1D or 802.1w

segments of the network.

E. Classic 802.1D timers, such as forward delay and max-age, will only be used as a backup, and

will not be necessary if point-to-point links and edge ports are properly identified and set by the

administrator.

Answer: B,E

Explanation:

Each port maintains a variable that defines the protocol to run on the corresponding segment. A

migration delay timer of three seconds also starts when the port comes up. When this timer runs,

the current STP or RSTP mode associated to the port is locked. As soon as the migration delay

expires, the port adapts to the mode that corresponds to the next BPDU it receives. If the port

changes its mode of operation as a result of a BPDU received, the migration delay restarts.

802.1D works by the concept that the protocol had to wait for the network to converge before it

transitioned a port into the forwarding state. With Rapid Spanning Tree it does not have to rely on

any timers, the only variables that that it relies on is edge ports and link types.

Any uplink port that has an alternate port to the root can be directly placed into the forwarding

state (This is the Rapid convergence that you speak of “restored quickly when RSTP is already in

use?”). This is what happened when you disconnected the primary look; the port that was ALT,

moved to FWD immediately, but the switch also still needs to create a BDU with the TC bit set to

notify the rest of the network that a topology has occurred and all non-edge designated ports will

transition to BLK, LRN, and then FWD to ensure there are no loops in the rest of the network. This

is why if you have a host on a switchport, and you know for a fact that it is only one host, enable

portfast to configure the port as an edgeport so that it does not have to transition to all the STP

states.

Reference

http://www.cisco.com/en/US/tech/tk389/tk621/technologies_white_paper09186a0080094cfa.shtml


QUESTION NO:11

When you are troubleshooting duplex mismatches, which two errors are typically seen on the full-

duplex end? (Choose two.)

A. runts

B. FCS errors

C. interface resets

D. late collisions

Answer: A,B

Explanation:


QUESTION NO:17

Which three combinations are valid LACP configurations that will set up a channel? (Choose

three.)

A. On/On

B. On/Auto

C. Passive/Active

D. Desirable/Auto

E. Active/Active

F. Desirable/Desirable

Answer: A,C,E

Explanation:


400-101 Practice Test400-101 Study Guide400-101 Braindumps

QUESTION NO:25

Refer to the exhibit.

After a link flap in the network, which two EIGRP neighbors will not be queried for alternative

paths? (Choose two.)

A. 192.168.1.1

B. 192.168.3.7

C. 192.168.3.8

D. 192.168.3.6

E. 192.168.2.1

F. 192.168.3.9

Answer: B,C

Explanation:

Explanation

Both 192.168.3.7 and 192.168.3.8 are in an EIGRP Stub area

The Enhanced Interior Gateway Routing Protocol (EIGRP) Stub Routing feature improves network

stability, reduces resource utilization, and simplifies stub router configuration.

Stub routing is commonly used in a hub and spoke network topology. In a hub and spoke network,

one or more end (stub) networks are connected to a remote router (the spoke) that is connected to

one or more distribution routers (the hub). The remote router is adjacent only to one or more

distribution routers. The only route for IP traffic to follow into the remote router is through a

distribution router. This type of configuration is commonly used in WAN topologies where the

distribution router is directly connected to a WAN. The distribution router can be connected to

many more remote routers. Often, the distribution router will be connected to 100 or more remote

routers. In a hub and spoke topology, the remote router must forward all nonlocal traffic to a

distribution router, so it becomes unnecessary for the remote router to hold a complete routing

table. Generally, the distribution router need not send anything more than a default route to the

remote router.

When using the EIGRP Stub Routing feature, you need to configure the distribution and remote

routers to use EIGRP, and to configure only the remote router as a stub. Only specified routes are

propagated from the remote (stub) router. The router responds to queries for summaries,

connected routes, redistributed static routes, external routes, and internal routes with the message

“inaccessible.” A router that is configured as a stub will send a special peer information packet to

all neighboring routers to report its status as a stub router. Any neighbor that receives a packet

informing it of the stub status will not query the stub router for any routes, and a router that has a

stub peer will not query that peer. The stub router will depend on the distribution router to send the

proper updates to all peers.

Reference

http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/eigrpstb.html#wp1021949


QUESTION NO:26

Refer to the exhibit.

Why is AS 65333 in parentheses?

A. It is an external AS.

B. It is a confederation AS.

C. It is the AS of a route reflector.

D. It is our own AS.

E. A route map has been applied to this route.

F. The BGP next hop is unreachable.

Answer: B

Explanation:


QUESTION NO:27

Refer to the exhibit.

What triggered the first SPF recalculation?

A. changes in a router LSA, subnet LSA, and external LSA

B. changes in a router LSA, summary network LSA, and external LSA

C. changes in a router LSA, summary network LSA, and summary ASBR LSA

D. changes in a router LSA, summary ASBR LSA, and external LSA

Answer: B

Explanation:

OSPFv2

Is built around links, and any IP prefix change in an area will trigger a full SPF. It advertises IP

information in Router and Network LSAs. The routers thus, advertise both the IP prefix information

(or the connected subnet information) and topology information in the same LSAs. This implies

that if an IP address attached to an interface changes, OSPF routers would have to originate a

Router LSA or a Network LSA, which btw also carries the topology information. This would trigger

a full SPF on all routers in that area, since the same LSAs are flooded to convey topological

change information. This can be an issue with an access router or the one sitting at the edge,

since many stub links can change regularly.

Only changes in interarea, external and NSSA routes result in partial SPF calculation (since type

3, 4, 5 and 7 LSAs only advertise IP prefix information) and thus IS-IS


QUESTION NO:32

Which two tunneling techniques support IPv6 multicasting? (Choose two.)

A. 6to4

B. 6over4

C. ISATAP

D. 6PE

E. GRE

Answer: B,E

Explanation:

When IPv6 multicast is supported (over a 6to4 tunnel), an IPv6 multicast routing protocol must be

used

Restrictions for Implementing IPv6 Multicast

IPv6 multicast for Cisco IOS software uses MLD version 2. This version of MLD is fully backward-

compatible with MLD version 1 (described in RFC 2710). Hosts that support only MLD version 1

will interoperate with a router running MLD version 2. Mixed LANs with both MLD version 1 and

MLD version 2 hosts are likewise supported.

IPv6 multicast is supported only over IPv4 tunnels in Cisco IOS Release 12.3(2)T, Cisco IOS

Release 12.2

(18)S, and Cisco IOS Release 12.0(26)S.

When the bidirectional (bidir) range is used in a network, all routers in that network must be able to

understand the bidirectional range in the bootstrap message (BSM).

IPv6 multicast routing is disabled by default when the ipv6 unicast-routing command is configured.

On Cisco Catalyst 6500 and Cisco 7600 series routers, the ipv6 multicast-routing also must be

enabled in order to use IPv6 unicast routing

Reference http://www.cisco.com/web/about/ac123/ac147/ac174/ac197/

about_cisco_ipj_archive_article09186a00800c830a.html

http://www.cisco.com/en/US/docs/ios/ipv6/configuration/guide/ip6-multicast.html

https://supportforums.cisco.com/thread/183386


QUESTION NO:36

For which routes does LDP advertise a label binding?

A. all routes in the routing table

B. only the IGP and BGP routes in the routing table

C. only the BGP routes in the routing table

D. only the IGP routes in the routing table

Answer: D

Explanation:


CertBus exam braindumps are pass guaranteed. We guarantee your pass for the 400-101 exam successfully with our Cisco materials. CertBus CCIE Routing and Switching Written v5.0 exam PDF and VCE are the latest and most accurate. We have the best Cisco in our team to make sure CertBus CCIE Routing and Switching Written v5.0 exam questions and answers are the most valid. CertBus exam CCIE Routing and Switching Written v5.0 exam dumps will help you to be the Cisco specialist, clear your 400-101 exam and get the final success.

400-101 Latest questions and answers on Google Drive(100% Free Download): https://drive.google.com/file/d/0B_3QX8HGRR1mdEpkTFZvSDJDc2c/view?usp=sharing

400-101 Cisco exam dumps (100% Pass Guaranteed) from CertBus: https://www.certgod.com/400-101.html [100% Exam Pass Guaranteed]

Why select/choose CertBus?

Millions of interested professionals can touch the destination of success in exams by certgod.com. products which would be available, affordable, updated and of really best quality to overcome the difficulties of any course outlines. Questions and Answers material is updated in highly outclass manner on regular basis and material is released periodically and is available in testing centers with whom we are maintaining our relationship to get latest material.

BrandCertbusTestkingPass4sureActualtestsOthers
Price$45.99$124.99$125.99$189$69.99-99.99
Up-to-Date Dumps
Free 365 Days Update
Real Questions
Printable PDF
Test Engine
One Time Purchase
Instant Download
Unlimited Install
100% Pass Guarantee
100% Money Back
Secure Payment
Privacy Protection