[PDF and VCE] Free Share 350-001 PDF Exam Preparation Materials with CertBus Real Exam Questions

Don’t worry about how to get yourself well prepared your CCIE 350-001 exam! CertBus will work you out of your CCIE 350-001 exam with the latest updated 350-001 CCIE Routing and Switching Written PDF and VCE dumps. CertBus provides the latest real Cisco CCIE 350-001 exam preparation material, covering every aspect of 350-001 exam curriculum.

We CertBus has our own expert team. They selected and published the latest 350-001 preparation materials from Cisco Official Exam-Center: http://www.certgod.com/350-001.html

QUESTION NO:24

Refer to the exhibit.

R1 is not learning about the 172.16.10.0 subnet from the BGP neighbor R2 (209.165.202.130).

What can be done so that R1 will learn about this network?

A. Disable auto-summary on R2.

B. Configure an explicit network command for the 172.16.10.0 subnet on R2.

C. Subnet information cannot be passed between IBGP peers.

D. Disable auto-summary on R1.

Answer: B

Explanation:

By default, BGP does not accept subnets redistributed from IGP. To advertise and carry subnet

routes in BGP, use an explicit network command or the no auto-summary command. If you disable

auto-summarization and have not entered a network command, you will not advertise network

routes for networks with subnet routes unless they contain a summary route.

Reference

http://www.cisco.com/en/US/docs/ios/11_3/np1/command/reference/1rbgp.html


QUESTION NO:14

Which three options are features of VTP version 3? (Choose three.)

A. VTPv3 supports 8K VLANs.

B. VTPv3 supports private VLAN mapping.

C. VTPv3 allows for domain discovery.

D. VTPv3 uses a primary server concept to avoid configuration revision issues.

E. VTPv3 is not compatible with VTPv1 or VTPv2.

F. VTPv3 has a hidden password option.

Answer: B,D,F

Explanation:

Key Benefits of VTP Version 3

Much work has gone into improving the usability of VTP version 3 in three major areas:

The new version of VTP offers better administrative control over which device is allowed to update

other devices\’ view of the VLAN topology. The chance of unintended and disruptive changes is

significantly reduced, and availability is increased. The reduced risk of unintended changes will

ease the change process and help speed deployment.

Functionality for the VLAN environment has been significantly expanded. Two enhancements are

most beneficial for today\’s networks:


QUESTION NO:16

In 802.1s, how is the VLAN to instance mapping represented in the BPDU?

A. The VLAN to instance mapping is a normal 16-byte field in the MST BPDU.

B. The VLAN to instance mapping is a normal 12-byte field in the MST BPDU.

C. The VLAN to instance mapping is a 16-byte MD5 signature field in the MST BPDU.

D. The VLAN to instance mapping is a 12-byte MD5 signature field in the MST BPDU.

Answer: C

Explanation:

MST Configuration and MST Region

Each switch running MST in the network has a single MST configuration that consists of these

three attributes:

1. An alphanumeric configuration name (32 bytes)

2. A configuration revision number (two bytes)

3. A 4096-element table that associates each of the potential 4096 VLANs supported on the

chassis to a given instance.

In order to be part of a common MST region, a group of switches must share the same

configuration attributes.

It is up to the network administrator to properly propagate the configuration throughout the region.

Currently, this step is only possible by the means of the command line interface (CLI) or through

Simple Network

Management Protocol (SNMP). Other methods can be envisioned, as the IEEE specification does

not explicitly mention how to accomplish that step.

Note: If for any reason two switches differ on one or more configuration attribute, the switches are

part of different regions. For more information refer to the Region Boundary section of this

document.

Region Boundary

In order to ensure consistent VLAN-to-instance mapping, it is necessary for the protocol to be able

to exactly identify the boundaries of the regions. For that purpose, the characteristics of the region

are included in the BPDUs. The exact VLANs-to-instance mapping is not propagated in the BPDU,

because the switches only need to know whether they are in the same region as a neighbor.

Therefore, only a digest of the VLANs-toinstance mapping table is sent, along with the revision

number and the name. Once a switch receives a BPDU, the switch extracts the digest (a

numerical value derived from the VLAN-to-instance mapping table through a mathematical

function) and compares this digest with its own computed digest. If the digests differ, the port on

which the BPDU was received is at the boundary of a region.

In generic terms, a port is at the boundary of a region if the designated bridge on its segment is in

a different region or if it receives legacy 802.1d BPDUs. In this diagram, the port on B1 is at the

boundary of region A, whereas the ports on B2 and B3 are internal to region B:

MST Instances

According to the IEEE 802.1s specification, an MST bridge must be able to handle at least these

two instances:

One Internal Spanning Tree (IST)

One or more Multiple Spanning Tree Instance(s) (MSTIs)

The terminology continues to evolve, as 802.1s is actually in a pre-standard phase. It is likely

these names will change in the final release of 802.1s. The Cisco implementation supports 16

instances: one IST (instance 0) and 15 MSTIs.

show vtp status

Cisco switches “show vtp status” Field Descriptions has a MD5 digest field that is a 16-byte

checksum of the

VTP configuration as shown below

Router# show vtp status

VTP Version: 3 (capable)

Configuration Revision: 1

Maximum VLANs supported locally: 1005

Number of existing VLANs: 37

VTP Operating Mode: Server

VTP Domain Name: [smartports]

VTP Pruning Mode: Disabled

VTP V2 Mode: Enabled

VTP Traps Generation: Disabled

MD5 digest : 0x26 0xEE 0x0D 0x84 0x73 0x0E 0x1B 0x69

Configuration last modified by 172.20.52.19 at 7-25-08 14:33:43

Local updater ID is 172.20.52.19 on interface Gi5/2 (first layer3 interface fou)

VTP version running: 2

Reference

http://www.cisco.com/en/US/tech/tk389/tk621/technologies_white_paper09186a0080094cfc.shtml

http://www.cisco.com/en/US/docs/ios-xml/ios/lanswitch/command/lsw-cr-book.pdf


QUESTION NO:29

What is the first thing that happens when IPv6 is enabled on an interface on a host?

A. A router solicitation is sent on that interface.

B. There is a duplicate address detection on the host interface.

C. The link local address is assigned on the host interface.

D. A neighbor redirect message is sent on the host interface.

Answer: B

Explanation:

Duplicate address detection (DAD) is used to verify that an IPv6 home address is unique on the

LAN before assigning the address to a physical interface (for example, QDIO). z/OS

Communications Server responds to other nodes doing DAD for IP addresses assigned to the

interface.

Reference

http://publib.boulder.ibm.com/infocenter/zos/v1r12/index.jsp?topic=/com.ibm.zos.r12.hale001

/ipv6d0021002145.htm


QUESTION NO:19

Which two options does Cisco PfR use to control the entrance link selection with inbound

optimization? (Choose two.)

A. Prepend extra AS hops to the BGP prefix.

B. Advertise more specific BGP prefixes (longer mask).

C. Add (prepend) one or more communities to the prefix that is advertised by BGP.

D. Have BGP dampen the prefix.

Answer: A,C

Explanation: PfR Entrance Link Selection Control Techniques

The PfR BGP inbound optimization feature introduced the ability to influence inbound traffic. A

network advertises reachability of its inside prefixes to the Internet using eBGP advertisements to

its ISPs. If the same prefix is advertised to more than one ISP, then the network is multihoming.

PfR BGP inbound optimization works best with multihomed networks, but it can also be used with

a network that has multiple connections to the same ISP. To implement BGP inbound

optimization, PfR manipulates eBGP advertisements to influence the best entrance selection for

traffic bound for inside prefixes. The benefit of implementing the best entrance selection is limited

to a network that has more than one ISP connection.

To enforce an entrance link selection, PfR offers the following methods:

BGP Autonomous System Number Prepend When an entrance link goes out-of-policy (OOP) due

to delay, or in images prior to Cisco IOS Releases 15.2(1) T1 and 15.1(2)S, and PfR selects a

best entrance for an inside prefix, extra autonomous system hops are prepended one at a time (up

to a maximum of six) to the inside prefix BGP advertisement over the other entrances. In Cisco

IOS Releases 15.2(1)T1, 15.1(2)S, and later releases, when an entrance link goes out-of policy

(OOP) due to unreachable or loss reasons, and PfR selects a best entrance for an inside prefix,

six extra autonomous system hops are prepended immediately to the inside prefix BGP

advertisement over the other entrances. The extra autonomous system hops on the other

entrances increase the probability that the best entrance will be used for the inside prefix. When

the entrance link is OOP due to unreachable or loss reasons, six extra autonomous system hops

are added immediately to allow the software to quickly move the traffic away from the old entrance

link. This is the default method PfR uses to control an inside prefix, and no user configuration is

required.

BGP Autonomous System Number Community Prepend

When an entrance link goes out-of-policy (OOP) due to delay, or in images prior to Cisco IOS

Releases 15.2

(1)T1 and 15.1(2)S, and PfR selects a best entrance for an inside prefix, a BGP prepend

community is attached one at a time (up to a maximum of six) to the inside prefix BGP

advertisement from the network to another autonomous system such as an ISP. In Cisco IOS

Releases 15.2(1)T1, 15.1(2)S, and later releases, when an entrance link goes out-of-policy (OOP)

due to unreachable or loss reasons, and PfR selects a best entrance for an inside prefix, six BGP

prepend communities are attached to the inside prefix BGP advertisement. The BGP prepend

community will increase the number of autonomous system hops in the advertisement of the

inside prefix from the ISP to its peers. Autonomous system prepend BGP community is the

preferred method to be used for PfR BGP inbound optimization because there is no risk of the

local ISP filtering the extra autonomous system hops. There are some issues, for example, not all

ISPs support the BGP prepend community, ISP policies may ignore or modify the autonomous

system hops, and a transit ISP may filter the autonomous system path. If you use this method of

inbound optimization and a change is made to an autonomous system, you must issue an

outbound reconfiguration using the “clear ip bgp” command.

Reference

http://www.cisco.com/en/US/docs/ios-xml/ios/pfr/configuration/15-2s/pfr-bgp-inbound.html#GUID-

F8A59E241D59-

4924-827D-B23B43D9A8E0

http://www.cisco.com/en/US/products/ps8787/products_ios_protocol_option_home.html


QUESTION NO:27

Refer to the exhibit.

What triggered the first SPF recalculation?

A. changes in a router LSA, subnet LSA, and external LSA

B. changes in a router LSA, summary network LSA, and external LSA

C. changes in a router LSA, summary network LSA, and summary ASBR LSA

D. changes in a router LSA, summary ASBR LSA, and external LSA

Answer: B

Explanation:

OSPFv2

Is built around links, and any IP prefix change in an area will trigger a full SPF. It advertises IP

information in Router and Network LSAs. The routers thus, advertise both the IP prefix information

(or the connected subnet information) and topology information in the same LSAs. This implies

that if an IP address attached to an interface changes, OSPF routers would have to originate a

Router LSA or a Network LSA, which btw also carries the topology information. This would trigger

a full SPF on all routers in that area, since the same LSAs are flooded to convey topological

change information. This can be an issue with an access router or the one sitting at the edge,

since many stub links can change regularly.

Only changes in interarea, external and NSSA routes result in partial SPF calculation (since type

3, 4, 5 and 7 LSAs only advertise IP prefix information) and thus IS-IS


QUESTION NO:6

Why would a rogue host that is running a DHCP server on a campus LAN network present a

security risk?

A. It may allocate IP addresses from an unknown subnet to the users.

B. All multicast traffic can be sniffed by using the DHCP multicast capabilities.

C. The CPU utilization of the first hop router can be overloaded by exploiting DHCP relay open

ports.

D. A potential man-in-the-middle attack can be used against the clients.

Answer: D

Explanation:


QUESTION NO:28

Which two orders in the BGP Best Path Selection process are correct? (Choose two.)

A. Higher local preference, then lowest MED, then eBGP over iBGP paths

B. Higher local preference, then highest weight, then lowest router ID

C. Highest weight, then higher local preference, then shortest AS path

D. Lowest origin type, then higher local preference, then lowest router ID

E. Highest weight, then higher local preference, then highest MED

Answer: A,C

Explanation:


QUESTION NO:3

A new backup connection is being deployed on a remote site router. The stability of the connection

has been a concern. In order to provide more information to EIGRP regarding this interface, you

wish to incorporate the “reliability” cost metric in the EIGRP calculation with the command metric

weights 1 0 1 0 1.

What impact will this modification on the remote site router have for other existing EIGRP

neighborships from the same EIGRP domain?

A. Existing neighbors will immediately begin using the new metric.

B. Existing neighbors will use the new metric after clearing the EIGRP neighbors.

C. Existing neighbors will resync, maintaining the neighbor relationship.

D. All existing neighbor relationships will go down.

Answer: D

Explanation:


QUESTION NO:23

What action will a BGP route reflector take when it receives a prefix marked with the community

attribute NO ADVERTISE from a client peer?

A. It will advertise the prefix to all other client peers and non-client peers.

B. It will not advertise the prefix to EBGP peers.

C. It will only advertise the prefix to all other IBGP peers.

D. It will not advertise the prefix to any peers.

Answer: D

Explanation:


CertBus exam braindumps are pass guaranteed. We guarantee your pass for the 350-001 exam successfully with our Cisco materials. CertBus CCIE Routing and Switching Written exam PDF and VCE are the latest and most accurate. We have the best Cisco in our team to make sure CertBus CCIE Routing and Switching Written exam questions and answers are the most valid. CertBus exam CCIE Routing and Switching Written exam dumps will help you to be the Cisco specialist, clear your 350-001 exam and get the final success.

350-001 Latest questions and answers on Google Drive(100% Free Download): https://drive.google.com/file/d/0B_3QX8HGRR1mUVBtM1piOS1IMEU/view?usp=sharing

350-001 Cisco exam dumps (100% Pass Guaranteed) from CertBus: http://www.certgod.com/350-001.html [100% Exam Pass Guaranteed]

Why select/choose CertBus?

Millions of interested professionals can touch the destination of success in exams by certgod.com. products which would be available, affordable, updated and of really best quality to overcome the difficulties of any course outlines. Questions and Answers material is updated in highly outclass manner on regular basis and material is released periodically and is available in testing centers with whom we are maintaining our relationship to get latest material.

BrandCertbusTestkingPass4sureActualtestsOthers
Price$45.99$124.99$125.99$189$69.99-99.99
Up-to-Date Dumps
Free 365 Days Update
Real Questions
Printable PDF
Test Engine
One Time Purchase
Instant Download
Unlimited Install
100% Pass Guarantee
100% Money Back
Secure Payment
Privacy Protection